Top 12 skills a CEO should demand in a data scientist to hire in 2022

September 21, 2022

Two decades ago, data scientists didn’t exist. Sure, some people cleaned, organized and analyzed information — but the data science professionals we admire today stand at the head of a relatively new (and vaunted) career path.

It is certainly one of the most popular careers because it is in great demand and highly paid. With data being the primary fuel of industry and organization, company executives must now determine how to drive their company in this rapidly changing environment. Not only is a growth blueprint essential, but so are individuals who can put the blueprint into action. When most senior executives or human resource professionals think of data-driven employment, a data scientist is the first position that comes to mind.

In this blog, we will discuss the top 12 skills a CEO should demand if hiring a data scientist in 2022. 

  1. Problem-Solving and Critical Thinking

Finding a needle in a haystack is the goal of data science. You'll need a candidate who has a sharp problem-solving mind to figure out what goes where and why, and how it all works together. Thinking critically implies making well-informed, suitable judgments based on evidence and facts. That means leaving your own ideas at the door and putting your faith - within reason - in the evidence. 

Being objective in the analysis is more difficult than it appears at first. One is not born with the ability to think critically. It's a talent that, like any other, can be learned and mastered with time. Always look for a candidate who is prepared to ask questions and change his/her opinion, even if it means starting over.

  1. Teamwork 

If you go through job listings on sites like Indeed or LinkedIn, you'll notice one phrase that appears repeatedly: must work well in a team. Contrary to popular belief, most scientific communities, including those in data science, do not rely on a single exceptional mind to drive forward development. A team's cohesiveness and collaboration power are typically more significant than any one member's brilliance or originality. Your potential candidate will not contribute to success if s/he does not play well with others or believes that s/he does not require assistance from your colleagues. If anything, candidates' poisonous attitudes may cause stress, decreased levels of accomplishment, and failure on the team.

Harvard researchers revealed in 2015 that even "moderate" amounts of toxic employee conduct might increase attrition, lower employee morale, and reduce team effectiveness. Eighty percent of employees polled said they wasted time worrying about coworker incivility. Seventy-eight per cent claimed toxicity had reduced their dedication to their work, and 66 per cent said their performance had suffered as a result. The fact is that being a team player is significantly more productive and fulfilling than being a solo act. Look for a candidate with good cooperation abilities, and both you and your team will profit!

  1. Communication 

Capable data scientists must be able to communicate the conclusions they get from data. If your candidate lacks the ability to convert technical jargon into plain English, no matter how significant the results are, your audience will not grasp them. Communication is one of the most important skills a data scientist can learn — and one that many pros struggle with. 

One 2017 poll that tried to uncover the most common impediments that data scientists encountered at work discovered that the majority of them were non-technical. Among the top seven barriers were "explaining data science to others," "lack of management/financial support," and "results not utilised by decision-makers."

You fail if you can't communicate - therefore look for a candidate who knows how to interpret! And can break down complicated topics into digestible explanations; rather than giving a dry report.

  1. Business Intelligence 

Sure, a candidate can’t start teaching abstruse mathematical theory whenever you want — but can they explain how that theory can be applied to advance business? True, data scientists must have a strong grasp of their field as well as a solid foundation of technical abilities. However, if a candidate is required to use those abilities to advance a corporate purpose, they must also have some level of business acumen. Taking a few business classes will not only help them bridge the gap between their data scientist peers and business-minded bosses, but it will also help them advance the company's growth and their career as well. It may also assist them in better applying their technical talents to create useful strategic insights for your firm.

  1. Statistics and mathematics 

When it comes to the role of arithmetic in machine learning, perspectives are mixed. There is no disputing that college-level comprehension is necessary. Linear algebra and calculus should not sound like other languages. However, if you're looking for a candidate for an internship or a junior position, then they don't need to be a math guru. But if you are looking for a candidate to work as a researcher, then the candidate must have more than just a strong math background. After all, research propels the business ahead, and you won't be able to accomplish anything until you have a candidate with a thorough grasp of how things function.

The fact is that just because data science libraries enable data scientists to perform complex arithmetic without breaking a sweat doesn't mean they shouldn't be aware of what's going on behind the surface. Get a candidate with the fundamentals right.

  1. AI and Machine Learning 

Machine learning is an essential ability for any data scientist. It is used to create prediction models ranging from simple linear regression to cutting-edge picture synthesis using generative adversarial networks. When it comes to machine learning, there is a lot to look for in a potential candidate. Regression, decision trees, SVM, Naive Bayes, clustering, and other classic machine learning techniques (supervised and unsupervised) are available. Then there are neural networks, which include feed-forward, convolutional, recurrent, LSTM, GRU, and GAN. There's also reinforcement learning, but you get the idea - machine learning is a vast subject. 

  1. Skills in cloud and MLOps

To remain relevant to the industry's current demands, more than three out of five (61.7%) companies say they need data scientists with updated knowledge in cloud technologies, followed by MLOps (56.1%) and transformers (55%). Three out of every four professionals with ten or more years of experience are learning MLOps to expand their skill sets. Cloud technologies (71.7%) are being learned as a fundamental new talent by mid-career professionals with 3-6 years of experience, followed by MLOps (62.3%), transformers (60.4%), and others.

Professionals in retail, CPG, and e-commerce are more likely (73.7%) to learn cloud technology as a new skill. As much as 70% of BFSI personnel upskill in MLOps. Another 70% and 60% of pharma and health workers are interested in acquiring transformers and computer vision as fundamental skills.

So make sure you don't miss out on such a talent who can bring cloud and MLOps skills into your company. 

  1. Storytelling and Data Visualization 

Data visualisation is enjoyable. Of course, it depends on who you ask, but many people consider it the most gratifying aspect of data science and machine learning. Look for a candidate who is a visualisation specialist and understands how to show data based on business requirements, and also how to integrate visualisations so that they tell a story. It might be as easy as integrating a few plots in a PDF report or as sophisticated as creating an interactive dashboard suited to the client's requirements.

The data visualisation tools utilised are determined by the language. Plotly, which works with R, Python, and JavaScript, may be the best option if you need a candidate for searching for a cross-platform interactive solution. Consider Tableau and PowerBI when you need a candidate for viewing data using a BI tool. 

Figure: Use of Data Visualization tools. 

  1. Programming 

Without programming, there is no data science. How else would you give the computer instructions? All data scientists must be familiar with writing code, most likely in Python, R, or SQL these days. The breadth of what a candidate will perform with programming languages differs from that of traditional programming professions in that they’ll lean toward specific libraries for data analysis, visualisation, and machine learning. 

Still, thinking like a coder entails more than just understanding how to solve issues. If there is one thing that data science sees a lot of, it is issues that need to be solved. But nothing is worse than understanding how to fix an issue but failing to transform it into long-lasting, production-ready code.

Out of the host of programming languages, 90% CEOs hire data science specialists who are specialists in Python as their preference for statistical modelling. Beyond that, the use of SQL (68.4%) is highest in retail, CPG, and ecommerce, followed by IT at 62.9%. R is the most widely used programming language if you operate in the pharma and healthcare business, with three in five (60%) data scientists reporting using it for statistical modelling.

  1. Mining Social Media 

The process of extracting data from social media sites such as Facebook, Twitter, and Instagram is referred to as social media mining. Skilled data scientists may utilise this data to uncover relevant trends and extract insights that a company can then use to gain a better knowledge of its target audience's preferences and social media actions. You need data scientists well versed with this type of study as it is essential for building a high-level social media marketing plan for businesses. Given the importance of social media in day-to-day business and its long-term viability, hiring data scientists with social media data mining abilities is an excellent strategy for company growth.

  1. Data manipulation 

After collecting data from various sources, a data scientist will almost surely come across some shoddy data that has to be cleaned up. You need to hire a candidate that knows what Data wrangling is. How to use it for the rectification of data faults such as missing information, string formatting, and date formatting. 

  1. Deployment of a Model 

What is the use of a ship if it cannot float? Non-technical users should not be expected to connect to specialised virtual machines or Jupyter notebooks only to check how your model operates. As a result, the ability to deploy a model is frequently required for data scientist employment.

The easiest solution is to establish an API around your model and deploy it as any other application — hosted on a virtual machine operating in the cloud. Things get harder if you wish to deploy models to mobile, as mobile devices are inferior when it comes to hardware. 

If speed is critical, sending an API call and depending on an Internet connection isn't the best option. Consider distributing the model directly to the mobile app. Machine learning developers may not know how to design mobile apps, but they may examine lighter network topologies that will have reduced inference time on lower-end hardware.

Consider hiring a candidate who is well versed with all the things discussed above related to deploying a model. 

Conclusion

And there you have it: the top twelve talents skills a CEO must look for while hiring a data scientist. Keep in mind that skill levels or talents themselves may differ from one firm to the next. Some data science jobs are more focused on databases and programming, while others are more focused on arithmetic. Nonetheless, we believe that these 12 data science skills are essential for your potential candidate in 2022.

Latest Blogs
This is a decorative image for: A Complete Guide To Customer Acquisition For Startups
October 18, 2022

A Complete Guide To Customer Acquisition For Startups

Any business is enlivened by its customers. Therefore, a strategy to constantly bring in new clients is an ongoing requirement. In this regard, having a proper customer acquisition strategy can be of great importance.

So, if you are just starting your business, or planning to expand it, read on to learn more about this concept.

The problem with customer acquisition

As an organization, when working in a diverse and competitive market like India, you need to have a well-defined customer acquisition strategy to attain success. However, this is where most startups struggle. Now, you may have a great product or service, but if you are not in the right place targeting the right demographic, you are not likely to get the results you want.

To resolve this, typically, companies invest, but if that is not channelized properly, it will be futile.

So, the best way out of this dilemma is to have a clear customer acquisition strategy in place.

How can you create the ideal customer acquisition strategy for your business?

  • Define what your goals are

You need to define your goals so that you can meet the revenue expectations you have for the current fiscal year. You need to find a value for the metrics –

  • MRR – Monthly recurring revenue, which tells you all the income that can be generated from all your income channels.
  • CLV – Customer lifetime value tells you how much a customer is willing to spend on your business during your mutual relationship duration.  
  • CAC – Customer acquisition costs, which tells how much your organization needs to spend to acquire customers constantly.
  • Churn rate – It tells you the rate at which customers stop doing business.

All these metrics tell you how well you will be able to grow your business and revenue.

  • Identify your ideal customers

You need to understand who your current customers are and who your target customers are. Once you are aware of your customer base, you can focus your energies in that direction and get the maximum sale of your products or services. You can also understand what your customers require through various analytics and markers and address them to leverage your products/services towards them.

  • Choose your channels for customer acquisition

How will you acquire customers who will eventually tell at what scale and at what rate you need to expand your business? You could market and sell your products on social media channels like Instagram, Facebook and YouTube, or invest in paid marketing like Google Ads. You need to develop a unique strategy for each of these channels. 

  • Communicate with your customers

If you know exactly what your customers have in mind, then you will be able to develop your customer strategy with a clear perspective in mind. You can do it through surveys or customer opinion forms, email contact forms, blog posts and social media posts. After that, you just need to measure the analytics, clearly understand the insights, and improve your strategy accordingly.

Combining these strategies with your long-term business plan will bring results. However, there will be challenges on the way, where you need to adapt as per the requirements to make the most of it. At the same time, introducing new technologies like AI and ML can also solve such issues easily. To learn more about the use of AI and ML and how they are transforming businesses, keep referring to the blog section of E2E Networks.

Reference Links

https://www.helpscout.com/customer-acquisition/

https://www.cloudways.com/blog/customer-acquisition-strategy-for-startups/

https://blog.hubspot.com/service/customer-acquisition

This is a decorative image for: Constructing 3D objects through Deep Learning
October 18, 2022

Image-based 3D Object Reconstruction State-of-the-Art and trends in the Deep Learning Era

3D reconstruction is one of the most complex issues of deep learning systems. There have been multiple types of research in this field, and almost everything has been tried on it — computer vision, computer graphics and machine learning, but to no avail. However, that has resulted in CNN or convolutional neural networks foraying into this field, which has yielded some success.

The Main Objective of the 3D Object Reconstruction

Developing this deep learning technology aims to infer the shape of 3D objects from 2D images. So, to conduct the experiment, you need the following:

  • Highly calibrated cameras that take a photograph of the image from various angles.
  • Large training datasets can predict the geometry of the object whose 3D image reconstruction needs to be done. These datasets can be collected from a database of images, or they can be collected and sampled from a video.

By using the apparatus and datasets, you will be able to proceed with the 3D reconstruction from 2D datasets.

State-of-the-art Technology Used by the Datasets for the Reconstruction of 3D Objects

The technology used for this purpose needs to stick to the following parameters:

  • Input

Training with the help of one or multiple RGB images, where the segmentation of the 3D ground truth needs to be done. It could be one image, multiple images or even a video stream.

The testing will also be done on the same parameters, which will also help to create a uniform, cluttered background, or both.

  • Output

The volumetric output will be done in both high and low resolution, and the surface output will be generated through parameterisation, template deformation and point cloud. Moreover, the direct and intermediate outputs will be calculated this way.

  • Network architecture used

The architecture used in training is 3D-VAE-GAN, which has an encoder and a decoder, with TL-Net and conditional GAN. At the same time, the testing architecture is 3D-VAE, which has an encoder and a decoder.

  • Training used

The degree of supervision used in 2D vs 3D supervision, weak supervision along with loss functions have to be included in this system. The training procedure is adversarial training with joint 2D and 3D embeddings. Also, the network architecture is extremely important for the speed and processing quality of the output images.

  • Practical applications and use cases

Volumetric representations and surface representations can do the reconstruction. Powerful computer systems need to be used for reconstruction.

Given below are some of the places where 3D Object Reconstruction Deep Learning Systems are used:

  • 3D reconstruction technology can be used in the Police Department for drawing the faces of criminals whose images have been procured from a crime site where their faces are not completely revealed.
  • It can be used for re-modelling ruins at ancient architectural sites. The rubble or the debris stubs of structures can be used to recreate the entire building structure and get an idea of how it looked in the past.
  • They can be used in plastic surgery where the organs, face, limbs or any other portion of the body has been damaged and needs to be rebuilt.
  • It can be used in airport security, where concealed shapes can be used for guessing whether a person is armed or is carrying explosives or not.
  • It can also help in completing DNA sequences.

So, if you are planning to implement this technology, then you can rent the required infrastructure from E2E Networks and avoid investing in it. And if you plan to learn more about such topics, then keep a tab on the blog section of the website

Reference Links

https://tongtianta.site/paper/68922

https://github.com/natowi/3D-Reconstruction-with-Deep-Learning-Methods

This is a decorative image for: Comprehensive Guide to Deep Q-Learning for Data Science Enthusiasts
October 18, 2022

A Comprehensive Guide To Deep Q-Learning For Data Science Enthusiasts

For all data science enthusiasts who would love to dig deep, we have composed a write-up about Q-Learning specifically for you all. Deep Q-Learning and Reinforcement learning (RL) are extremely popular these days. These two data science methodologies use Python libraries like TensorFlow 2 and openAI’s Gym environment.

So, read on to know more.

What is Deep Q-Learning?

Deep Q-Learning utilizes the principles of Q-learning, but instead of using the Q-table, it uses the neural network. The algorithm of deep Q-Learning uses the states as input and the optimal Q-value of every action possible as the output. The agent gathers and stores all the previous experiences in the memory of the trained tuple in the following order:

State> Next state> Action> Reward

The neural network training stability increases using a random batch of previous data by using the experience replay. Experience replay also means the previous experiences stocking, and the target network uses it for training and calculation of the Q-network and the predicted Q-Value. This neural network uses openAI Gym, which is provided by taxi-v3 environments.

Now, any understanding of Deep Q-Learning   is incomplete without talking about Reinforcement Learning.

What is Reinforcement Learning?

Reinforcement is a subsection of ML. This part of ML is related to the action in which an environmental agent participates in a reward-based system and uses Reinforcement Learning to maximize the rewards. Reinforcement Learning is a different technique from unsupervised learning or supervised learning because it does not require a supervised input/output pair. The number of corrections is also less, so it is a highly efficient technique.

Now, the understanding of reinforcement learning is incomplete without knowing about Markov Decision Process (MDP). MDP is involved with each state that has been presented in the results of the environment, derived from the state previously there. The information which composes both states is gathered and transferred to the decision process. The task of the chosen agent is to maximize the awards. The MDP optimizes the actions and helps construct the optimal policy.

For developing the MDP, you need to follow the Q-Learning Algorithm, which is an extremely important part of data science and machine learning.

What is Q-Learning Algorithm?

The process of Q-Learning is important for understanding the data from scratch. It involves defining the parameters, choosing the actions from the current state and also choosing the actions from the previous state and then developing a Q-table for maximizing the results or output rewards.

The 4 steps that are involved in Q-Learning:

  1. Initializing parameters – The RL (reinforcement learning) model learns the set of actions that the agent requires in the state, environment and time.
  2. Identifying current state – The model stores the prior records for optimal action definition for maximizing the results. For acting in the present state, the state needs to be identified and perform an action combination for it.
  3. Choosing the optimal action set and gaining the relevant experience – A Q-table is generated from the data with a set of specific states and actions, and the weight of this data is calculated for updating the Q-Table to the following step.
  4. Updating Q-table rewards and next state determination – After the relevant experience is gained and agents start getting environmental records. The reward amplitude helps to present the subsequent step.  

In case the Q-table size is huge, then the generation of the model is a time-consuming process. This situation requires Deep Q-learning.

Hopefully, this write-up has provided an outline of Deep Q-Learning and its related concepts. If you wish to learn more about such topics, then keep a tab on the blog section of the E2E Networks website.

Reference Links

https://analyticsindiamag.com/comprehensive-guide-to-deep-q-learning-for-data-science-enthusiasts/

https://medium.com/@jereminuerofficial/a-comprehensive-guide-to-deep-q-learning-8aeed632f52f

This is a decorative image for: GAUDI: A Neural Architect for Immersive 3D Scene Generation
October 13, 2022

GAUDI: A Neural Architect for Immersive 3D Scene Generation

The evolution of artificial intelligence in the past decade has been staggering, and now the focus is shifting towards AI and ML systems to understand and generate 3D spaces. As a result, there has been extensive research on manipulating 3D generative models. In this regard, Apple’s AI and ML scientists have developed GAUDI, a method specifically for this job.

An introduction to GAUDI

The GAUDI 3D immersive technique founders named it after the famous architect Antoni Gaudi. This AI model takes the help of a camera pose decoder, which enables it to guess the possible camera angles of a scene. Hence, the decoder then makes it possible to predict the 3D canvas from almost every angle.

What does GAUDI do?

GAUDI can perform multiple functions –

  • The extensions of these generative models have a tremendous effect on ML and computer vision. Pragmatically, such models are highly useful. They are applied in model-based reinforcement learning and planning world models, SLAM is s, or 3D content creation.
  • Generative modelling for 3D objects has been used for generating scenes using graf, pigan, and gsn, which incorporate a GAN (Generative Adversarial Network). The generator codes radiance fields exclusively. Using the 3D space in the scene along with the camera pose generates the 3D image from that point. This point has a density scalar and RGB value for that specific point in 3D space. This can be done from a 2D camera view. It does this by imposing 3D datasets on those 2D shots. It isolates various objects and scenes and combines them to render a new scene altogether.
  • GAUDI also removes GANs pathologies like mode collapse and improved GAN.
  • GAUDI also uses this to train data on a canonical coordinate system. You can compare it by looking at the trajectory of the scenes.

How is GAUDI applied to the content?

The steps of application for GAUDI have been given below:

  • Each trajectory is created, which consists of a sequence of posed images (These images are from a 3D scene) encoded into a latent representation. This representation which has a radiance field or what we refer to as the 3D scene and the camera path is created in a disentangled way. The results are interpreted as free parameters. The problem is optimized by and formulation of a reconstruction objective.
  • This simple training process is then scaled to trajectories, thousands of them creating a large number of views. The model samples the radiance fields totally from the previous distribution that the model has learned.
  • The scenes are thus synthesized by interpolation within the hidden space.
  • The scaling of 3D scenes generates many scenes that contain thousands of images. During training, there is no issue related to canonical orientation or mode collapse.
  • A novel de-noising optimization technique is used to find hidden representations that collaborate in modelling the camera poses and the radiance field to create multiple datasets with state-of-the-art performance in generating 3D scenes by building a setup that uses images and text.

To conclude, GAUDI has more capabilities and can also be used for sampling various images and video datasets. Furthermore, this will make a foray into AR (augmented reality) and VR (virtual reality). With GAUDI in hand, the sky is only the limit in the field of media creation. So, if you enjoy reading about the latest development in the field of AI and ML, then keep a tab on the blog section of the E2E Networks website.

Reference Links

https://www.researchgate.net/publication/362323995_GAUDI_A_Neural_Architect_for_Immersive_3D_Scene_Generation

https://www.technology.org/2022/07/31/gaudi-a-neural-architect-for-immersive-3d-scene-generation/ 

https://www.patentlyapple.com/2022/08/apple-has-unveiled-gaudi-a-neural-architect-for-immersive-3d-scene-generation.html

Build on the most powerful infrastructure cloud

A vector illustration of a tech city using latest cloud technologies & infrastructure