Top 12 Research Papers to Study If You Are Interested in Machine Learning‍

August 1, 2023
By

Machine Learning is a fast evolving field that has helped almost all types of  industries, including healthcare, finance, and technology. Over the past few years, ML has become a popular topic for research, and has achieved numerous breakthroughs.

This article discusses 10 research articles that a researcher needs to read, to keep up with the latest ML approaches and concepts in 2023.

  1. Novel Machine Learning Algorithm Can Identify Patients at Risk of Poor Overall Survival Following Curative Resection for Colorectal Liver Metastases

(Amygdalos et al., 2023)

Field of Research: Medical and Healthcare

This paper demonstrates the power of a gradient-boosted decision tree model in identifying high-risk patients for poor overall survival after curative resection for colorectal liver metastases. The findings suggest potential benefits of closer follow-up and aggressive treatment strategies for these patients, paving the way for more personalized healthcare interventions.

  1. A Novel Study on Machine Learning Algorithm-Based Cardiovascular Disease Prediction

(Khan, Qureshi, Daniyal, & Tawiah, 2023)

Field of Research: Healthcare and Medical 

Investigating machine learning methods, such as decision trees and random forests, this study focuses on accurate prediction and decision-making for cardiovascular disease patients. The research aims to improve patient diagnosis and treatment through the integration of predictive algorithms, contributing to the advancement of precision medicine.

  1. A Novel Machine Learning Algorithm for Interval Systems Approximation Based on Artificial Neural Network

(Zerrougui, Adamou-Mitiche, & Mitiche, 2023)

Field of Research: Structural Dynamics and AI-Based Order Reduction

This paper introduces a novel artificial intelligence technique using artificial neural networks to reduce the degree of large interval systems. The method maintains system stability while achieving a very acceptable approximation, presenting a promising approach for more efficient and reliable structural dynamics analysis.

  1. A Novel Machine Learning Approach for Solar Radiation Estimation

(Hissou, Benkirane, Guezzaz, Azrour, & Beni-Hssane, 2023)

Field of Research: Renewable Energy and Climate Modeling

Addressing solar energy variability, this paper explores a multivariate time series model with recursive feature elimination to estimate solar radiation. The findings contribute to renewable energy planning and climate modeling efforts, enabling better utilization of solar resources and facilitating sustainable energy transitions.

  1. A Novel Machine Learning Method for Evaluating the Impact of Emission Sources on Ozone Formation

(Cheng et al., 2023)

Field of Research: Environmental Science and Pollution Control

Using positive matrix factorization and Shapley Additive explanation, this research assesses the impact of emission sources on ozone formation. The findings provide valuable insights into pollution control strategies, aiding in the design of effective air quality management policies.

  1. AcrPred: A Hybrid Optimization with Enumerated Machine Learning Algorithm to Predict Anti-CRISPR Proteins

(Dao et al., 2023)

Field of Research: Biotechnology and Gene Editing

CRISPR-Cas is a powerful gene editing tool, and this paper focuses on predicting anti-CRISPR proteins using a high-accuracy predictive model based on machine learning. The research provides potential tools for gene editing regulation, opening up new avenues for precision gene therapies.

  1. Modeling the Mechanical Properties of Recycled Aggregate Concrete Using Hybrid Machine Learning Algorithms

(Peng & Unluer, 2023)

Field of Research: Civil Engineering and Sustainable Construction

This study employs hybrid machine learning models to predict the mechanical properties of recycled aggregate concrete. The research contributes to sustainable construction practices and material optimization, offering greener and more efficient building solutions.

  1. Deep MCANC: A Deep Learning Approach to Multi-Channel Active Noise Control

(Zhang & Wang, 2023)

Field of Research: Acoustics and Noise Control

This paper introduces deep MCANC, a deep learning-based approach for multi-channel active noise control. The research demonstrates the effectiveness of the method in wideband noise reduction and real-time applications, potentially revolutionizing noise reduction technologies.

  1. Wheel Defect Detection Using a Hybrid Deep Learning Approach 

(Shaikh, Hussain, & Chowdhry, 2023)

Field of Research: Railway Transportation and Vibration Analysis

Addressing the issue of defective wheels in railway transportation, this research proposes a hybrid deep learning approach using accelerometer data for accurate detection of various wheel defects. The findings contribute to improved operational safety and maintenance, ensuring smoother and safer railway operations.

  1. An Improved Forest Fire Detection Method Based on the Detectron2 Model and a Deep Learning Approach

(Abdusalomov, Islam, Nasimov, Mukhiddinov, & Whangbo, 2023)

Field of Research: Environmental Monitoring and Fire Safety

In this study, an improved forest fire detection method is proposed, utilizing deep learning approaches and the Detectron2 model. The research demonstrates high precision in detecting fires, which is critical for timely response and fire control, providing a reliable and scalable solution for fire management systems.

Insights

These ten research papers present significant contributions to the field of machine learning, showcasing the transformative potential of this technology across various domains. From improving healthcare outcomes and advancing renewable energy utilization to enhancing environmental monitoring and safety measures, machine learning continues to revolutionize industries and shape a more sustainable and efficient future.

As aspiring researchers and practitioners delve into these informative papers, they will gain a deeper appreciation for the multifaceted applications of machine learning, inspiring further exploration and innovation in this dynamic and evolving field. Embracing the insights from these research papers, the machine learning community can continue pushing the boundaries of AI technology, ushering in a new era of intelligent solutions for complex challenges.

Additional Reading: Review Papers on Machine Learning

  1. Machine Learning and Deep Learning: A Review of Methods and Applications

(Sharifani & Amini, 2023)

Field of Research: Artificial Intelligence and Machine Learning

This comprehensive review article explores the methods and applications of both machine learning and deep learning. It delves into the strengths and weaknesses of these technologies and discusses their potential future directions. Additionally, the article addresses the challenges associated with data privacy, ethical considerations, and the importance of transparency in decision-making processes. As machine learning and deep learning continue to reshape industries and human-computer interactions, this review provides a valuable resource for understanding their transformative impact and potential for future innovation.

  1. Machine Learning Algorithms to Forecast Air Quality: A Survey

(Méndez, Merayo, & Núñez, 2023)

Field of Research: Environmental Science and Air Quality Forecasting

Air pollution poses significant health risks, making the accurate forecasting of pollutant concentrations crucial for public health and environmental management. This survey reviews machine learning algorithms, particularly deep learning models, that have been applied to air quality forecasting from 2011 to 2021. The paper classifies the contributions based on geographical distribution, predicted values, predictor variables, evaluation metrics, and machine learning models used, providing valuable insights into the state-of-the-art techniques in this important environmental domain.

The two additional review papers provide readers with broader perspectives on the state-of-the-art in machine learning and its diverse applications. Together, these review papers complement the top 10 research papers by providing readers with comprehensive insights into the broader landscape of machine learning research and its real-world applications. As the field continues to evolve, staying updated with both cutting-edge research and broader trends will be essential for leveraging machine learning's potential to tackle complex problems and create a positive impact on society.

References

Abdusalomov, A. B., Islam, B. M. S., Nasimov, R., Mukhiddinov, M., & Whangbo, T. K. (2023). An Improved Forest Fire Detection Method Based on the Detectron2 Model and a Deep Learning Approach. Sensors, 23(3), 1512. https://doi.org/10.3390/s23031512

Amygdalos, I., Müller‐Franzes, G., Bednarsch, J., Czigany, Z., Ulmer, T. F., Bruners, P., … Lang, S. A. (2023). Novel machine learning algorithm can identify patients at risk of poor overall survival following curative resection for colorectal liver metastases. Journal of Hepato-Biliary-Pancreatic Sciences, 30(5), 602–614. https://doi.org/10.1002/jhbp.1249

Cheng, Y., Huang, X.-F., Peng, Y., Tang, M.-X., Zhu, B., Xia, S.-Y., & He, L.-Y. (2023). A novel machine learning method for evaluating the impact of emission sources on ozone formation. Environmental Pollution, 316, 120685. https://doi.org/10.1016/j.envpol.2022.120685

Dao, F.-Y., Liu, M.-L., Su, W., Lv, H., Zhang, Z.-Y., Lin, H., & Liu, L. (2023). AcrPred: A hybrid optimization with enumerated machine learning algorithm to predict Anti-CRISPR proteins. International Journal of Biological Macromolecules, 228, 706–714. https://doi.org/10.1016/j.ijbiomac.2022.12.250

Hissou, H., Benkirane, S., Guezzaz, A., Azrour, M., & Beni-Hssane, A. (2023). A Novel Machine Learning Approach for Solar Radiation Estimation. Sustainability, 15(13), 10609. https://doi.org/10.3390/su151310609

Khan, A., Qureshi, M., Daniyal, M., & Tawiah, K. (2023). A Novel Study on Machine Learning Algorithm-Based Cardiovascular Disease Prediction. Health & Social Care in the Community, 2023, 1–10. https://doi.org/10.1155/2023/1406060

Méndez, M., Merayo, M. G., & Núñez, M. (2023). Machine learning algorithms to forecast air quality: a survey. Artificial Intelligence Review, 56(9), 10031–10066. https://doi.org/10.1007/s10462-023-10424-4

Peng, Y., & Unluer, C. (2023). Modeling the mechanical properties of recycled aggregate concrete using hybrid machine learning algorithms. Resources, Conservation and Recycling, 190, 106812. https://doi.org/10.1016/j.resconrec.2022.106812

Shaikh, K., Hussain, I., & Chowdhry, B. S. (2023). Wheel Defect Detection Using a Hybrid Deep Learning Approach. Sensors, 23(14), 6248. https://doi.org/10.3390/s23146248

Sharifani, K., & Amini, M. (2023). Machine Learning and Deep Learning: A Review of Methods and Applications. World Information Technology and Engineering Journal, 10(7), 3897–3904. Retrieved from https://ssrn.com/abstract=4458723

Zerrougui, R., Adamou-Mitiche, A. B. H., & Mitiche, L. (2023). A novel machine learning algorithm for interval systems approximation based on artificial neural network. Journal of Intelligent Manufacturing, 34(5), 2171–2184. https://doi.org/10.1007/s10845-021-01874-0

Zhang, H., & Wang, D. (2023). Deep MCANC: A deep learning approach to multi-channel active noise control. Neural Networks, 158, 318–327. https://doi.org/10.1016/j.neunet.2022.11.029

Latest Blogs
This is a decorative image for: A Complete Guide To Customer Acquisition For Startups
October 18, 2022

A Complete Guide To Customer Acquisition For Startups

Any business is enlivened by its customers. Therefore, a strategy to constantly bring in new clients is an ongoing requirement. In this regard, having a proper customer acquisition strategy can be of great importance.

So, if you are just starting your business, or planning to expand it, read on to learn more about this concept.

The problem with customer acquisition

As an organization, when working in a diverse and competitive market like India, you need to have a well-defined customer acquisition strategy to attain success. However, this is where most startups struggle. Now, you may have a great product or service, but if you are not in the right place targeting the right demographic, you are not likely to get the results you want.

To resolve this, typically, companies invest, but if that is not channelized properly, it will be futile.

So, the best way out of this dilemma is to have a clear customer acquisition strategy in place.

How can you create the ideal customer acquisition strategy for your business?

  • Define what your goals are

You need to define your goals so that you can meet the revenue expectations you have for the current fiscal year. You need to find a value for the metrics –

  • MRR – Monthly recurring revenue, which tells you all the income that can be generated from all your income channels.
  • CLV – Customer lifetime value tells you how much a customer is willing to spend on your business during your mutual relationship duration.  
  • CAC – Customer acquisition costs, which tells how much your organization needs to spend to acquire customers constantly.
  • Churn rate – It tells you the rate at which customers stop doing business.

All these metrics tell you how well you will be able to grow your business and revenue.

  • Identify your ideal customers

You need to understand who your current customers are and who your target customers are. Once you are aware of your customer base, you can focus your energies in that direction and get the maximum sale of your products or services. You can also understand what your customers require through various analytics and markers and address them to leverage your products/services towards them.

  • Choose your channels for customer acquisition

How will you acquire customers who will eventually tell at what scale and at what rate you need to expand your business? You could market and sell your products on social media channels like Instagram, Facebook and YouTube, or invest in paid marketing like Google Ads. You need to develop a unique strategy for each of these channels. 

  • Communicate with your customers

If you know exactly what your customers have in mind, then you will be able to develop your customer strategy with a clear perspective in mind. You can do it through surveys or customer opinion forms, email contact forms, blog posts and social media posts. After that, you just need to measure the analytics, clearly understand the insights, and improve your strategy accordingly.

Combining these strategies with your long-term business plan will bring results. However, there will be challenges on the way, where you need to adapt as per the requirements to make the most of it. At the same time, introducing new technologies like AI and ML can also solve such issues easily. To learn more about the use of AI and ML and how they are transforming businesses, keep referring to the blog section of E2E Networks.

Reference Links

https://www.helpscout.com/customer-acquisition/

https://www.cloudways.com/blog/customer-acquisition-strategy-for-startups/

https://blog.hubspot.com/service/customer-acquisition

This is a decorative image for: Constructing 3D objects through Deep Learning
October 18, 2022

Image-based 3D Object Reconstruction State-of-the-Art and trends in the Deep Learning Era

3D reconstruction is one of the most complex issues of deep learning systems. There have been multiple types of research in this field, and almost everything has been tried on it — computer vision, computer graphics and machine learning, but to no avail. However, that has resulted in CNN or convolutional neural networks foraying into this field, which has yielded some success.

The Main Objective of the 3D Object Reconstruction

Developing this deep learning technology aims to infer the shape of 3D objects from 2D images. So, to conduct the experiment, you need the following:

  • Highly calibrated cameras that take a photograph of the image from various angles.
  • Large training datasets can predict the geometry of the object whose 3D image reconstruction needs to be done. These datasets can be collected from a database of images, or they can be collected and sampled from a video.

By using the apparatus and datasets, you will be able to proceed with the 3D reconstruction from 2D datasets.

State-of-the-art Technology Used by the Datasets for the Reconstruction of 3D Objects

The technology used for this purpose needs to stick to the following parameters:

  • Input

Training with the help of one or multiple RGB images, where the segmentation of the 3D ground truth needs to be done. It could be one image, multiple images or even a video stream.

The testing will also be done on the same parameters, which will also help to create a uniform, cluttered background, or both.

  • Output

The volumetric output will be done in both high and low resolution, and the surface output will be generated through parameterisation, template deformation and point cloud. Moreover, the direct and intermediate outputs will be calculated this way.

  • Network architecture used

The architecture used in training is 3D-VAE-GAN, which has an encoder and a decoder, with TL-Net and conditional GAN. At the same time, the testing architecture is 3D-VAE, which has an encoder and a decoder.

  • Training used

The degree of supervision used in 2D vs 3D supervision, weak supervision along with loss functions have to be included in this system. The training procedure is adversarial training with joint 2D and 3D embeddings. Also, the network architecture is extremely important for the speed and processing quality of the output images.

  • Practical applications and use cases

Volumetric representations and surface representations can do the reconstruction. Powerful computer systems need to be used for reconstruction.

Given below are some of the places where 3D Object Reconstruction Deep Learning Systems are used:

  • 3D reconstruction technology can be used in the Police Department for drawing the faces of criminals whose images have been procured from a crime site where their faces are not completely revealed.
  • It can be used for re-modelling ruins at ancient architectural sites. The rubble or the debris stubs of structures can be used to recreate the entire building structure and get an idea of how it looked in the past.
  • They can be used in plastic surgery where the organs, face, limbs or any other portion of the body has been damaged and needs to be rebuilt.
  • It can be used in airport security, where concealed shapes can be used for guessing whether a person is armed or is carrying explosives or not.
  • It can also help in completing DNA sequences.

So, if you are planning to implement this technology, then you can rent the required infrastructure from E2E Networks and avoid investing in it. And if you plan to learn more about such topics, then keep a tab on the blog section of the website

Reference Links

https://tongtianta.site/paper/68922

https://github.com/natowi/3D-Reconstruction-with-Deep-Learning-Methods

This is a decorative image for: Comprehensive Guide to Deep Q-Learning for Data Science Enthusiasts
October 18, 2022

A Comprehensive Guide To Deep Q-Learning For Data Science Enthusiasts

For all data science enthusiasts who would love to dig deep, we have composed a write-up about Q-Learning specifically for you all. Deep Q-Learning and Reinforcement learning (RL) are extremely popular these days. These two data science methodologies use Python libraries like TensorFlow 2 and openAI’s Gym environment.

So, read on to know more.

What is Deep Q-Learning?

Deep Q-Learning utilizes the principles of Q-learning, but instead of using the Q-table, it uses the neural network. The algorithm of deep Q-Learning uses the states as input and the optimal Q-value of every action possible as the output. The agent gathers and stores all the previous experiences in the memory of the trained tuple in the following order:

State> Next state> Action> Reward

The neural network training stability increases using a random batch of previous data by using the experience replay. Experience replay also means the previous experiences stocking, and the target network uses it for training and calculation of the Q-network and the predicted Q-Value. This neural network uses openAI Gym, which is provided by taxi-v3 environments.

Now, any understanding of Deep Q-Learning   is incomplete without talking about Reinforcement Learning.

What is Reinforcement Learning?

Reinforcement is a subsection of ML. This part of ML is related to the action in which an environmental agent participates in a reward-based system and uses Reinforcement Learning to maximize the rewards. Reinforcement Learning is a different technique from unsupervised learning or supervised learning because it does not require a supervised input/output pair. The number of corrections is also less, so it is a highly efficient technique.

Now, the understanding of reinforcement learning is incomplete without knowing about Markov Decision Process (MDP). MDP is involved with each state that has been presented in the results of the environment, derived from the state previously there. The information which composes both states is gathered and transferred to the decision process. The task of the chosen agent is to maximize the awards. The MDP optimizes the actions and helps construct the optimal policy.

For developing the MDP, you need to follow the Q-Learning Algorithm, which is an extremely important part of data science and machine learning.

What is Q-Learning Algorithm?

The process of Q-Learning is important for understanding the data from scratch. It involves defining the parameters, choosing the actions from the current state and also choosing the actions from the previous state and then developing a Q-table for maximizing the results or output rewards.

The 4 steps that are involved in Q-Learning:

  1. Initializing parameters – The RL (reinforcement learning) model learns the set of actions that the agent requires in the state, environment and time.
  2. Identifying current state – The model stores the prior records for optimal action definition for maximizing the results. For acting in the present state, the state needs to be identified and perform an action combination for it.
  3. Choosing the optimal action set and gaining the relevant experience – A Q-table is generated from the data with a set of specific states and actions, and the weight of this data is calculated for updating the Q-Table to the following step.
  4. Updating Q-table rewards and next state determination – After the relevant experience is gained and agents start getting environmental records. The reward amplitude helps to present the subsequent step.  

In case the Q-table size is huge, then the generation of the model is a time-consuming process. This situation requires Deep Q-learning.

Hopefully, this write-up has provided an outline of Deep Q-Learning and its related concepts. If you wish to learn more about such topics, then keep a tab on the blog section of the E2E Networks website.

Reference Links

https://analyticsindiamag.com/comprehensive-guide-to-deep-q-learning-for-data-science-enthusiasts/

https://medium.com/@jereminuerofficial/a-comprehensive-guide-to-deep-q-learning-8aeed632f52f

This is a decorative image for: GAUDI: A Neural Architect for Immersive 3D Scene Generation
October 13, 2022

GAUDI: A Neural Architect for Immersive 3D Scene Generation

The evolution of artificial intelligence in the past decade has been staggering, and now the focus is shifting towards AI and ML systems to understand and generate 3D spaces. As a result, there has been extensive research on manipulating 3D generative models. In this regard, Apple’s AI and ML scientists have developed GAUDI, a method specifically for this job.

An introduction to GAUDI

The GAUDI 3D immersive technique founders named it after the famous architect Antoni Gaudi. This AI model takes the help of a camera pose decoder, which enables it to guess the possible camera angles of a scene. Hence, the decoder then makes it possible to predict the 3D canvas from almost every angle.

What does GAUDI do?

GAUDI can perform multiple functions –

  • The extensions of these generative models have a tremendous effect on ML and computer vision. Pragmatically, such models are highly useful. They are applied in model-based reinforcement learning and planning world models, SLAM is s, or 3D content creation.
  • Generative modelling for 3D objects has been used for generating scenes using graf, pigan, and gsn, which incorporate a GAN (Generative Adversarial Network). The generator codes radiance fields exclusively. Using the 3D space in the scene along with the camera pose generates the 3D image from that point. This point has a density scalar and RGB value for that specific point in 3D space. This can be done from a 2D camera view. It does this by imposing 3D datasets on those 2D shots. It isolates various objects and scenes and combines them to render a new scene altogether.
  • GAUDI also removes GANs pathologies like mode collapse and improved GAN.
  • GAUDI also uses this to train data on a canonical coordinate system. You can compare it by looking at the trajectory of the scenes.

How is GAUDI applied to the content?

The steps of application for GAUDI have been given below:

  • Each trajectory is created, which consists of a sequence of posed images (These images are from a 3D scene) encoded into a latent representation. This representation which has a radiance field or what we refer to as the 3D scene and the camera path is created in a disentangled way. The results are interpreted as free parameters. The problem is optimized by and formulation of a reconstruction objective.
  • This simple training process is then scaled to trajectories, thousands of them creating a large number of views. The model samples the radiance fields totally from the previous distribution that the model has learned.
  • The scenes are thus synthesized by interpolation within the hidden space.
  • The scaling of 3D scenes generates many scenes that contain thousands of images. During training, there is no issue related to canonical orientation or mode collapse.
  • A novel de-noising optimization technique is used to find hidden representations that collaborate in modelling the camera poses and the radiance field to create multiple datasets with state-of-the-art performance in generating 3D scenes by building a setup that uses images and text.

To conclude, GAUDI has more capabilities and can also be used for sampling various images and video datasets. Furthermore, this will make a foray into AR (augmented reality) and VR (virtual reality). With GAUDI in hand, the sky is only the limit in the field of media creation. So, if you enjoy reading about the latest development in the field of AI and ML, then keep a tab on the blog section of the E2E Networks website.

Reference Links

https://www.researchgate.net/publication/362323995_GAUDI_A_Neural_Architect_for_Immersive_3D_Scene_Generation

https://www.technology.org/2022/07/31/gaudi-a-neural-architect-for-immersive-3d-scene-generation/ 

https://www.patentlyapple.com/2022/08/apple-has-unveiled-gaudi-a-neural-architect-for-immersive-3d-scene-generation.html

Build on the most powerful infrastructure cloud

A vector illustration of a tech city using latest cloud technologies & infrastructure