A Comparative Analysis of H200 vs. H100 vs. A100 vs. L40S vs. L4 GPUs

October 11, 2024

If you're building applications using large language models (LLMs), large vision models (LVMs), or computer vision models, you know that selecting the right GPU can make a world of difference to your project’s success.

Cloud GPUs like the H200, H100, A100, L40S, and L4 each offer unique capabilities, and knowing which one suits your needs best can maximize both efficiency and cost-effectiveness. These GPUs significantly differ in their underlying architectures, available RAM, and therefore impact the model training or inference steps significantly. 

In this article, we will break down their technical specs, use cases, and underlying architectures, so you can decide which GPU is right for your workload.

Cloud GPU Architectures

Before we dive in, it’s important to understand the underlying architecture differences between the cloud GPU models we will compare. 

Hopper Architecture

The Hopper architecture, used in the H200 and H100 GPUs, introduces significant advancements to support large-scale AI and HPC workloads. Built with over 80 billion transistors using the TSMC 4N process, it features the fourth-generation Tensor Cores with a new Transformer Engine that accelerates the training of AI models, specifically enhancing FP8 and FP16 precision capabilities. The Hopper Tensor Cores have tripled the floating-point operations per second (FLOPS) for TF32, FP64, FP16, and INT8 data types compared to the Ampere generation, providing significant speed-ups for training and inference tasks.

Key innovations in Hopper include fourth-generation NVLink, which allows up to 900 GB/s bidirectional communication between GPUs—7x the bandwidth of PCIe Gen5. The new Multi-Instance GPU (MIG) allows the Hopper GPUs to partition GPU resources into several smaller, isolated instances, providing flexibility in managing multiple workloads. Hopper also supports NVIDIA Confidential Computing, which ensures that data remains secure even while in use, adding a new level of data protection for AI and HPC tasks.

The H100 GPU powered by Hopper architecture offers improved per-SM computational power, delivering up to 9x faster AI training and up to 30x faster inference compared to the A100, due to innovations like the new DPX instructions and higher GPU clock speeds. This makes it highly effective for workloads such as genomics, large language models, and other HPC applications.

Ampere Architecture

The Ampere architecture powers the A100 GPU, which is well-regarded for its versatility across both training and inference workloads. Ampere introduces third-generation Tensor Cores that support mixed precision (FP64, FP32, FP16, and INT8), making it ideal for a wide range of AI workloads, from precise computations to rapid inferencing.

Ampere GPUs feature Multi-Instance GPU (MIG) technology, which allows the A100 to be split into multiple smaller instances, enabling the execution of several workloads simultaneously. This flexibility is particularly useful for environments that need to balance training, inference, and testing. Ampere also integrates NVLink for high-speed inter-GPU communication, essential for scaling distributed workloads.

The Ampere architecture brings improvements in processing rates, with peak performance of up to 19.5 TFLOPS (FP64), 312 TFLOPS (FP16), and 624 TOPS (INT8). These advancements make it a solid choice for mixed workloads, offering a combination of power and cost-efficiency.

Ada Lovelace Architecture

The Ada Lovelace architecture underpins the L4 and L40S GPUs, and it is optimized for a combination of video processing and AI workloads, such as real-time video analytics and edge AI applications. Built with fourth-generation tensor cores, Ada Lovelace GPUs offer enhanced NVENC/NVDEC engines, providing efficiency for multimedia workloads that require both graphics and AI capabilities.

Energy efficiency is a key focus for the Ada Lovelace architecture, making it well-suited for edge deployments where power constraints are critical. It also supports SR-IOV virtualization, allowing multiple virtual functions, which is beneficial for cloud-based environments and virtualized deployments. This architecture aims to balance performance with energy consumption, particularly for use cases that require real-time processing.

Comparison of Cloud GPUs

Now, let’s look at all the four GPUs and how they match up. You should look at the GPU RAM, the clock speed, and the FP64/FP16 performances to truly understand the differences. 

H200: Performance Beyond Boundaries

The H200 is one of the newest cloud GPUs, built to push the boundaries of AI and machine learning. The H200 uses the Hopper architecture, which provides significant improvements in performance compared to its predecessors. With advanced tensor cores and enhanced NVLink for faster communication, the H200 is optimized for deep learning model training, particularly when dealing with extremely large datasets.

  • Architecture: Hopper
  • Memory: 141 GB HBM3e with 4.8 TB/s bandwidth, making it ideal for large-scale AI and high-performance computing (HPC) workloads​.
  • Enhanced Tensor Cores: The H200 provides advanced tensor core capabilities for faster deep learning calculations, particularly beneficial for large language models (LLMs)​.
  • NVLink: Offers enhanced bandwidth of 900 GB/s for faster GPU-to-GPU communication​.
  • Multi-Instance GPU (MIG) support: Allows for partitioning into up to 7 instances, optimizing resource usage​.
  • GPU Clock Speed: 1.75 GHz​
  • FP64 Performance: Up to 67 TFLOPS​
  • FP16 Performance: Up to 1.5 PFLOPS
  • Transformer Engine: Supports FP8, enabling optimal LLM training and inference.​

The NVIDIA H200 is the first GPU to offer 141 gigabytes (GB) of HBM3e memory at 4.8 terabytes per second (TB/s)—nearly double the capacity of the NVIDIA H100 Tensor Core GPU with 1.4X more memory bandwidth. This larger and faster memory accelerates generative AI and LLMs, while advancing scientific computing for HPC workloads with better energy efficiency and lower total cost of ownership.

If you're working on projects involving LLMs like the Llama 3.1 series or LVMs like the Llama 3.2 series, the H200 is a great fit. It has the memory bandwidth and processing power required to handle the intensive data streams that these applications demand. Its cutting-edge technology also makes it ideal for HPC (High-Performance Computing) workloads, providing unmatched computational power.

How It Helps AI/ML Developers: For AI/ML developers, the H200 offers the ability to train large-scale models faster and more efficiently. The enhanced tensor cores are especially beneficial for those developing advanced neural networks, as they allow for quicker iteration cycles. This means you can experiment with different model architectures and hyperparameters without being held back by hardware limitations.

Open Source LLMs Suitable for H200 Training:

  • Llama 3.2 series
  • Llama 3.1 series
  • BLOOM
  • Falcon LLM
  • Mistral

These models can benefit from the enhanced tensor cores and memory bandwidth of the H200, allowing for efficient training and scaling to handle large datasets and complex architectures.

H100: The Reliable Powerhouse

The H100 GPU, also powered by the Hopper architecture, is a tried-and-true workhorse. Though it may not have some of the extreme enhancements seen in the H200, it still offers remarkable capabilities, making it the ideal choice for most AI training and inferencing tasks.

Equipped with multi-instance GPU (MIG) technology, the H100 allows you to partition GPU resources effectively, which is great if you’re running multiple smaller-scale models simultaneously. If you're building cloud services that need scalability and flexibility, the H100’s MIG capability lets you get the most out of a single GPU by efficiently handling multiple workloads. It's perfect for those projects where power and versatility are key but where budget or efficiency might be a consideration compared to the newer H200.

Technical Details of the H100:

  • Architecture: Hopper
  • Memory: 80 GB HBM2e, with a memory bandwidth of 2.04 TB/s​.
  • Multi-Instance GPU (MIG) Support: Yes, enabling resource partitioning for various workloads​.
  • Enhanced Tensor Cores: The H100 features fourth-generation tensor cores, which provide a significant boost to deep learning operations, particularly for LLMs​.
  • NVLink: Supports high-speed GPU-to-GPU communication with 600 GB/s bandwidth via NVLink​.
  • GPU Clock Speed: Base clock of 1.09 GHz, with a boost up to 1.755 GHz​.
  • FP64 Performance: Up to 48 TFLOPS​.
  • FP16 Performance: Up to 1.6 PFLOPS.

How It Helps AI/ML Developers: The H100’s MIG technology is a game-changer for developers who need to run multiple experiments in parallel. It allows you to allocate GPU resources dynamically, meaning you can optimize usage based on the specific needs of each task. This is particularly helpful in environments where you need to balance training, inference, and testing without compromising on performance.

A100: The Versatile Choice

The A100 is based on the Ampere architecture and has been a staple for many AI and ML workloads. Its versatility is its defining feature, providing powerful acceleration for everything, from deep learning to data analytics and HPC applications.

The A100 offers support for both FP64 for HPC and FP16/INT8 for AI workloads, which means it excels at both precision-driven scientific computing and faster, less precision-critical AI inference tasks. If you’re running mixed workloads—say, an AI training pipeline alongside data preprocessing—the A100 provides a solid combination of power and flexibility. It’s also a good match for users who need a balance between performance and cost, offering excellent capabilities without the higher price tag associated with newer models like the H200.

Technical Details of the A100:

  • Architecture: Ampere
  • Memory: 40/80 GB HBM2
  • Enhanced Tensor Cores for efficient AI training.
  • Multi-Instance GPU (MIG) support for partitioning.
  • NVLink for high-speed GPU-to-GPU communication.
  • GPU Clock Speed: 1.41 GHz
  • FP64 Performance: Up to 19.5 TFLOPS.
  • FP16 Performance: Up to 312 TFLOPS.
  • INT8 Performance: Up to 624 TOPS.

How It Helps AI/ML Developers: For AI/ML developers, the A100 is an all-rounder that enables you to tackle a wide variety of tasks without needing multiple specialized GPUs. Its support for mixed precision allows for faster training times without sacrificing accuracy, which is crucial when developing models that need both speed and precision. It’s also ideal for data scientists who need to switch between different types of workloads frequently.

L40S: Optimized for Multi-Workload Performance

The L40S is a powerful GPU, built on the Ada Lovelace architecture, optimized for AI training and inference, 3D rendering, and multimedia streaming. It provides substantial acceleration for LLM inference and training, video applications, and graphics-intensive workloads. With enhanced NVENC and NVDEC capabilities, it is perfect for real-time video processing, transcoding, and AI-powered video analytics, making it a top choice for developers building AI-based video applications or platforms requiring real-time performance, such as gaming and interactive services.

Technical Details of L40S:

  • Architecture: Ada Lovelace
  • Memory Type: 48 GB GDDR6 with ECC.
  • Memory Bandwidth: 864 GB/sec
  • Tensor Cores: Fourth-generation Tensor Cores (568 cores).
  • PCIe Support: PCIe Gen4 x16 interface.
  • SR-IOV Virtualization: Supported with up to 32 virtual functions (VFs).
  • CUDA Support: CUDA 12.0 or later.
  • Video Processing: 3x NVENC and 3x NVDEC, with AV1 encoding/decoding for AI-powered video analytics.
  • Energy Efficiency: Provides up to 5X higher inference performance compared to previous generations.

How It Helps AI/ML Developers:

For developers working on video analytics or vision applications, the L40S offers specialized capabilities for implementing real-time AI features. Its enhanced encoding and decoding capabilities reduce computational load and latency, allowing developers to focus on sophisticated analytics algorithms. It’s also a robust choice for LLM training, generative AI, and 3D rendering, making it suitable for diverse AI and multimedia workloads.

This GPU is designed for multi-workload acceleration, making it flexible enough to handle tasks ranging from AI training to media streaming.

L4: Lightweight, Energy-Efficient Solution

The L4 GPU, also built on the Ada Lovelace architecture, is designed with energy efficiency in mind. It’s ideal for workloads that need a balance between performance and power consumption, such as edge AI, real-time inference, and lightweight machine learning.

The L4 is your go-to if you're deploying AI inference workloads with lightweight models. It can handle a range of applications, from speech recognition to image classification, but without the costs. 

Technical Details of L4:

  • Architecture: Ada Lovelace
  • Memory Type: GDDR6
  • Memory Size: 24 GB
  • Memory Bandwidth: 300 GB/sec
  • PCIe Support: PCIe Gen4 x16 interface.
  • CUDA Support: CUDA 12.0 or later.
  • SR-IOV Virtualization: Supported with up to 32 virtual functions (VFs).
  • Enhanced NVENC and NVDEC for AI-powered video analytics.
  • Energy Efficiency: Delivers up to 120X higher AI video performance compared to CPU-based solutions

How It Helps AI/ML Developers: For developers focused on lightweight AI inference, the L4 provides the perfect mix of performance and capability. It allows you to deploy AI models in environments with limited sizes. 

Summary of Technical Specs

Here’s a quick comparison of the core specs:

Which One Should You Choose?

  • For LLM Training and HPC: Go for the H200 or H100 if your workloads are heavy and require top-tier performance.
  • For Versatile AI and Data Processing: The A100 is ideal for mixed workloads and those who need both precision and speed.
  • For Media AI and Vision Applications: The L40S is your best bet, offering optimizations specifically for video workloads.
  • For Lightweight Tasks: Choose the L4 for lightweight inference tasks, especially where large models aren’t necessary.

Here is a list of the top open source LLMs as of now, and their sizes in terms of parameters. 

To Summarize

Understanding these GPUs and their unique features helps you leverage the right tools for your specific workload. Whether you're building the next generative AI model or fine-tuning computer vision models, there's a cloud GPU that perfectly suits your needs. To get started, sign up to E2E Cloud

Latest Blogs
This is a decorative image for: A Complete Guide To Customer Acquisition For Startups
October 18, 2022

A Complete Guide To Customer Acquisition For Startups

Any business is enlivened by its customers. Therefore, a strategy to constantly bring in new clients is an ongoing requirement. In this regard, having a proper customer acquisition strategy can be of great importance.

So, if you are just starting your business, or planning to expand it, read on to learn more about this concept.

The problem with customer acquisition

As an organization, when working in a diverse and competitive market like India, you need to have a well-defined customer acquisition strategy to attain success. However, this is where most startups struggle. Now, you may have a great product or service, but if you are not in the right place targeting the right demographic, you are not likely to get the results you want.

To resolve this, typically, companies invest, but if that is not channelized properly, it will be futile.

So, the best way out of this dilemma is to have a clear customer acquisition strategy in place.

How can you create the ideal customer acquisition strategy for your business?

  • Define what your goals are

You need to define your goals so that you can meet the revenue expectations you have for the current fiscal year. You need to find a value for the metrics –

  • MRR – Monthly recurring revenue, which tells you all the income that can be generated from all your income channels.
  • CLV – Customer lifetime value tells you how much a customer is willing to spend on your business during your mutual relationship duration.  
  • CAC – Customer acquisition costs, which tells how much your organization needs to spend to acquire customers constantly.
  • Churn rate – It tells you the rate at which customers stop doing business.

All these metrics tell you how well you will be able to grow your business and revenue.

  • Identify your ideal customers

You need to understand who your current customers are and who your target customers are. Once you are aware of your customer base, you can focus your energies in that direction and get the maximum sale of your products or services. You can also understand what your customers require through various analytics and markers and address them to leverage your products/services towards them.

  • Choose your channels for customer acquisition

How will you acquire customers who will eventually tell at what scale and at what rate you need to expand your business? You could market and sell your products on social media channels like Instagram, Facebook and YouTube, or invest in paid marketing like Google Ads. You need to develop a unique strategy for each of these channels. 

  • Communicate with your customers

If you know exactly what your customers have in mind, then you will be able to develop your customer strategy with a clear perspective in mind. You can do it through surveys or customer opinion forms, email contact forms, blog posts and social media posts. After that, you just need to measure the analytics, clearly understand the insights, and improve your strategy accordingly.

Combining these strategies with your long-term business plan will bring results. However, there will be challenges on the way, where you need to adapt as per the requirements to make the most of it. At the same time, introducing new technologies like AI and ML can also solve such issues easily. To learn more about the use of AI and ML and how they are transforming businesses, keep referring to the blog section of E2E Networks.

Reference Links

https://www.helpscout.com/customer-acquisition/

https://www.cloudways.com/blog/customer-acquisition-strategy-for-startups/

https://blog.hubspot.com/service/customer-acquisition

This is a decorative image for: Constructing 3D objects through Deep Learning
October 18, 2022

Image-based 3D Object Reconstruction State-of-the-Art and trends in the Deep Learning Era

3D reconstruction is one of the most complex issues of deep learning systems. There have been multiple types of research in this field, and almost everything has been tried on it — computer vision, computer graphics and machine learning, but to no avail. However, that has resulted in CNN or convolutional neural networks foraying into this field, which has yielded some success.

The Main Objective of the 3D Object Reconstruction

Developing this deep learning technology aims to infer the shape of 3D objects from 2D images. So, to conduct the experiment, you need the following:

  • Highly calibrated cameras that take a photograph of the image from various angles.
  • Large training datasets can predict the geometry of the object whose 3D image reconstruction needs to be done. These datasets can be collected from a database of images, or they can be collected and sampled from a video.

By using the apparatus and datasets, you will be able to proceed with the 3D reconstruction from 2D datasets.

State-of-the-art Technology Used by the Datasets for the Reconstruction of 3D Objects

The technology used for this purpose needs to stick to the following parameters:

  • Input

Training with the help of one or multiple RGB images, where the segmentation of the 3D ground truth needs to be done. It could be one image, multiple images or even a video stream.

The testing will also be done on the same parameters, which will also help to create a uniform, cluttered background, or both.

  • Output

The volumetric output will be done in both high and low resolution, and the surface output will be generated through parameterisation, template deformation and point cloud. Moreover, the direct and intermediate outputs will be calculated this way.

  • Network architecture used

The architecture used in training is 3D-VAE-GAN, which has an encoder and a decoder, with TL-Net and conditional GAN. At the same time, the testing architecture is 3D-VAE, which has an encoder and a decoder.

  • Training used

The degree of supervision used in 2D vs 3D supervision, weak supervision along with loss functions have to be included in this system. The training procedure is adversarial training with joint 2D and 3D embeddings. Also, the network architecture is extremely important for the speed and processing quality of the output images.

  • Practical applications and use cases

Volumetric representations and surface representations can do the reconstruction. Powerful computer systems need to be used for reconstruction.

Given below are some of the places where 3D Object Reconstruction Deep Learning Systems are used:

  • 3D reconstruction technology can be used in the Police Department for drawing the faces of criminals whose images have been procured from a crime site where their faces are not completely revealed.
  • It can be used for re-modelling ruins at ancient architectural sites. The rubble or the debris stubs of structures can be used to recreate the entire building structure and get an idea of how it looked in the past.
  • They can be used in plastic surgery where the organs, face, limbs or any other portion of the body has been damaged and needs to be rebuilt.
  • It can be used in airport security, where concealed shapes can be used for guessing whether a person is armed or is carrying explosives or not.
  • It can also help in completing DNA sequences.

So, if you are planning to implement this technology, then you can rent the required infrastructure from E2E Networks and avoid investing in it. And if you plan to learn more about such topics, then keep a tab on the blog section of the website

Reference Links

https://tongtianta.site/paper/68922

https://github.com/natowi/3D-Reconstruction-with-Deep-Learning-Methods

This is a decorative image for: Comprehensive Guide to Deep Q-Learning for Data Science Enthusiasts
October 18, 2022

A Comprehensive Guide To Deep Q-Learning For Data Science Enthusiasts

For all data science enthusiasts who would love to dig deep, we have composed a write-up about Q-Learning specifically for you all. Deep Q-Learning and Reinforcement learning (RL) are extremely popular these days. These two data science methodologies use Python libraries like TensorFlow 2 and openAI’s Gym environment.

So, read on to know more.

What is Deep Q-Learning?

Deep Q-Learning utilizes the principles of Q-learning, but instead of using the Q-table, it uses the neural network. The algorithm of deep Q-Learning uses the states as input and the optimal Q-value of every action possible as the output. The agent gathers and stores all the previous experiences in the memory of the trained tuple in the following order:

State> Next state> Action> Reward

The neural network training stability increases using a random batch of previous data by using the experience replay. Experience replay also means the previous experiences stocking, and the target network uses it for training and calculation of the Q-network and the predicted Q-Value. This neural network uses openAI Gym, which is provided by taxi-v3 environments.

Now, any understanding of Deep Q-Learning   is incomplete without talking about Reinforcement Learning.

What is Reinforcement Learning?

Reinforcement is a subsection of ML. This part of ML is related to the action in which an environmental agent participates in a reward-based system and uses Reinforcement Learning to maximize the rewards. Reinforcement Learning is a different technique from unsupervised learning or supervised learning because it does not require a supervised input/output pair. The number of corrections is also less, so it is a highly efficient technique.

Now, the understanding of reinforcement learning is incomplete without knowing about Markov Decision Process (MDP). MDP is involved with each state that has been presented in the results of the environment, derived from the state previously there. The information which composes both states is gathered and transferred to the decision process. The task of the chosen agent is to maximize the awards. The MDP optimizes the actions and helps construct the optimal policy.

For developing the MDP, you need to follow the Q-Learning Algorithm, which is an extremely important part of data science and machine learning.

What is Q-Learning Algorithm?

The process of Q-Learning is important for understanding the data from scratch. It involves defining the parameters, choosing the actions from the current state and also choosing the actions from the previous state and then developing a Q-table for maximizing the results or output rewards.

The 4 steps that are involved in Q-Learning:

  1. Initializing parameters – The RL (reinforcement learning) model learns the set of actions that the agent requires in the state, environment and time.
  2. Identifying current state – The model stores the prior records for optimal action definition for maximizing the results. For acting in the present state, the state needs to be identified and perform an action combination for it.
  3. Choosing the optimal action set and gaining the relevant experience – A Q-table is generated from the data with a set of specific states and actions, and the weight of this data is calculated for updating the Q-Table to the following step.
  4. Updating Q-table rewards and next state determination – After the relevant experience is gained and agents start getting environmental records. The reward amplitude helps to present the subsequent step.  

In case the Q-table size is huge, then the generation of the model is a time-consuming process. This situation requires Deep Q-learning.

Hopefully, this write-up has provided an outline of Deep Q-Learning and its related concepts. If you wish to learn more about such topics, then keep a tab on the blog section of the E2E Networks website.

Reference Links

https://analyticsindiamag.com/comprehensive-guide-to-deep-q-learning-for-data-science-enthusiasts/

https://medium.com/@jereminuerofficial/a-comprehensive-guide-to-deep-q-learning-8aeed632f52f

This is a decorative image for: GAUDI: A Neural Architect for Immersive 3D Scene Generation
October 13, 2022

GAUDI: A Neural Architect for Immersive 3D Scene Generation

The evolution of artificial intelligence in the past decade has been staggering, and now the focus is shifting towards AI and ML systems to understand and generate 3D spaces. As a result, there has been extensive research on manipulating 3D generative models. In this regard, Apple’s AI and ML scientists have developed GAUDI, a method specifically for this job.

An introduction to GAUDI

The GAUDI 3D immersive technique founders named it after the famous architect Antoni Gaudi. This AI model takes the help of a camera pose decoder, which enables it to guess the possible camera angles of a scene. Hence, the decoder then makes it possible to predict the 3D canvas from almost every angle.

What does GAUDI do?

GAUDI can perform multiple functions –

  • The extensions of these generative models have a tremendous effect on ML and computer vision. Pragmatically, such models are highly useful. They are applied in model-based reinforcement learning and planning world models, SLAM is s, or 3D content creation.
  • Generative modelling for 3D objects has been used for generating scenes using graf, pigan, and gsn, which incorporate a GAN (Generative Adversarial Network). The generator codes radiance fields exclusively. Using the 3D space in the scene along with the camera pose generates the 3D image from that point. This point has a density scalar and RGB value for that specific point in 3D space. This can be done from a 2D camera view. It does this by imposing 3D datasets on those 2D shots. It isolates various objects and scenes and combines them to render a new scene altogether.
  • GAUDI also removes GANs pathologies like mode collapse and improved GAN.
  • GAUDI also uses this to train data on a canonical coordinate system. You can compare it by looking at the trajectory of the scenes.

How is GAUDI applied to the content?

The steps of application for GAUDI have been given below:

  • Each trajectory is created, which consists of a sequence of posed images (These images are from a 3D scene) encoded into a latent representation. This representation which has a radiance field or what we refer to as the 3D scene and the camera path is created in a disentangled way. The results are interpreted as free parameters. The problem is optimized by and formulation of a reconstruction objective.
  • This simple training process is then scaled to trajectories, thousands of them creating a large number of views. The model samples the radiance fields totally from the previous distribution that the model has learned.
  • The scenes are thus synthesized by interpolation within the hidden space.
  • The scaling of 3D scenes generates many scenes that contain thousands of images. During training, there is no issue related to canonical orientation or mode collapse.
  • A novel de-noising optimization technique is used to find hidden representations that collaborate in modelling the camera poses and the radiance field to create multiple datasets with state-of-the-art performance in generating 3D scenes by building a setup that uses images and text.

To conclude, GAUDI has more capabilities and can also be used for sampling various images and video datasets. Furthermore, this will make a foray into AR (augmented reality) and VR (virtual reality). With GAUDI in hand, the sky is only the limit in the field of media creation. So, if you enjoy reading about the latest development in the field of AI and ML, then keep a tab on the blog section of the E2E Networks website.

Reference Links

https://www.researchgate.net/publication/362323995_GAUDI_A_Neural_Architect_for_Immersive_3D_Scene_Generation

https://www.technology.org/2022/07/31/gaudi-a-neural-architect-for-immersive-3d-scene-generation/ 

https://www.patentlyapple.com/2022/08/apple-has-unveiled-gaudi-a-neural-architect-for-immersive-3d-scene-generation.html

Build on the most powerful infrastructure cloud

A vector illustration of a tech city using latest cloud technologies & infrastructure